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SONIC BOOM PROPAGATION IN A STRATIFIED ATMOSPHERE,
WITH COMPUTER PROGRAM

Wallace D. Hayes*, Rudolph C. Haefelil, and H. E. Kulsrud
Aeronautical Research Associates of Princeton, Inc.

SUMMARY

An analysis 1is presented of the propagation of sonic boom in
a horizontally stratified atmosphere with winds. This analysis,
to some extent a synthesis of established theory but with many new
features, is given 1in sufficient detail to serve as an algorithm
for the computation of sonilc boom pressure signatures. This algo-
rithm is realized 1n a FORTRAN computer prograr.

Required inputs include atmospheric properties and horizontal
winds as functions of altitude, information on the flight path of
the maneuvering aircraft, and aircraft F-functions. Ray-tube
areas are computed according to geometric acoustic theory, and
nonlinear effects are accounted for through an appropriate age
variable. The output includes midfield pressure signatures at any
altitude.

Results from sample calculations are presented and discussed.
INTRODUCTION

Sonic booms have become of prime importance 1n the design and
operation of supersonic aircraft. A need has been felt for a
comprehensive analysis and algorithm,realized in a practicable
computer program, which would provide realistic calculations for
sonic boom signatures in our atmosphere. The project reported
here was to carry out such an analysis with computer program.

Earlier algorithms for sonic boom have used various unjusti-
fied simplifying assumptions. A basic aim of the present algo-
rithm has been to avoid these assumptions as far as possible and
to extend the cases which could be considered. Thus, the present
algorithm includes the following features:

(1) The inclusion of maneuvering aircraft in a sonic boom
pressure calculation;

(2) An appropriate ray-tube area calculation based on linear
geometric acoustics;
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(3) Results in the form of complete signatures, without
far-field assumptions, obtained through the use of an
"age" variable in the calculation of nonlinear effects,

The present algorithm assumes a horizontally stratified atmosphere
with horizontal winds but without turbulence. This limiting
assumption corresponds to the case of greatest practical interest
and considerably simplifies the calculation.

The analysis is largely a rational synthesis of existing
theories described in the literature, with some new theoretical
development, Specific references are cited in the body of the
report. A principal new theoretical development is in the calcu-
lation of ray-tube area. The analysils is also new in the careful
piecing together of a number of calculations, principally in the
relation of the wave system and rays issuing from the aircraft
with a wave system and Tays properly describing propagation in the
stratified atmosphere with winds. This relation requires the
consideration of a galilean transformation connecting a local coor-
dinate system with the fixed coordinate system.

A note of caution at this point may be in order. Although
our analysis may be described as largely a synthesis of existing
theories, it should be pointed out that not all these theories may
be familiar to all workers in the field of sonic boom. In order
to make the analysis feasible, the concept of galilean invariance
has been brought in from the subject of mechanics, and a number of
concepts have been brought in from the general theory of wave
propagation. The pertinent literature is diffused through many
sources. A number of basic papers were written in contexts diff-
erent from that of sonic boom. Thus, some readers will not find
our analysis as a synthesis of the theories with which they are
well acquainted., In general, the more familiar sonic boom
theories are inadequate.,

The digital computer program has been written in ASA FORTRAN
IV (except some literal text enclosed in asterisks) with flexibi-
lity a main aim., The brogram is designed to be usable on a wide
variety of modern computers and to be applicable to a variety of
problems. It was developed using an IBM-1130, Model 2B, and then
modified for and operated with a CDC-6600. The program may be
altered to accommodate the operating system constraints of g
particular computer through simple changes in input-output unit
designation. It may also be necessary to make some alterations in
brogram structure from subprogram linkage to main program linkage
to meet core storage requirements, as in the case for the IBM-1130,
A number of input options have been provided. There are choices
in the specifications of input and output units, in how the atmos-
phere is to be Specified, and in how certain maneuver time deriva-
tives are to be obtained from input data.



This report is accordingly divided into two main parts - one
giving an exposition of the basic theory and development of the
equations, the other describing and listing the computer prograii
and presenting sample results. The first part occupies the chapter
entitled THEORETICAL ANALYSIS. This begins with a general descrip-
tion of the theory, with accent on the physical reasoning and
motivation underlying the analysis. In the course of the analysis,
brief statements are included on its applications in the computer
program. Besides current references, there are some historical
notes appended.

The second part, consisting of COMPUTER PROGRAM and COMPUTA-
TTON RESULTS, includes a complete description of the program, with
tables giving the FORTRAN nomenclature used for various variables
and subroutines, and with a program listing. Sample input and
output listings are included, and typical computation results are
presented.

SYMBOLS

This section includes symbols used 1n the analysis, excepting
a few which are only used where they are defined. FORTRAN symbols
that are employed in the computer program are identified in
Table 1.

Symbol Page No.
a speed of sound (ed. 6) 21
A ray-tube area cut by horizontal plane 34

(eas. 19, 26)

A(xo) apea distribution of slender body 43
c group or ray veloclty (eq. 12) 29
c, normal phase velocity (ed. 11) 28
c, Snell's law invariant (eqs. 14, 16) 29
s specific heat at constant pressure 65
Cp wave drag coefficlent (ed. 36) L9
CDqu drag coefficient per unit azimuth angle (eq.36) 49
Cr, 1ift coefficlent (ed. 4) 18



Cn - Cp net axial force coefficient (eq. 3) 18
D drag (eq. 3) 18
fy,fz line force distributions 43
F F-function for aircraft signatures (eq. 33) 46
Fy input F-function L6
F F-function conversion factor (eq. 34) 48
oS gravitational acceleration (eq. 1) 16
H, altitude of ground above sea level 16
I1,2,3 integrals used in calculation of A (eq. 24) 39
k heat conduction coefficient (eq. 58) 63
Kp reflection factor o4
4,m,n direction cosines of initial wave normal (eq.8) 25
ﬁ(xl) equivalent 1line force distribution 45
L 1ift (eq. 4) 18
L distance along aircraft axis (local phase) 43
L, agircraft reference length 48
M Mach number of aircraft, V/a 21
n unit vector normal to wave front 28
Ny >0y normal and axial load factors (egs. 3, U4) 18
N(7) reduced longitudinal kinematic viscosity 66
(eqa. 60)
p pressure (eqs. 1, 39) 16
q perturbation velocity (eq. 39) 51
a,, dynamic pressure (eq. 3) 18
r cylindrical radius in local coordinates 44
r position vector (eq. 12) 29



ref
S(xy,0.)

So(€)

t(x,,v,)

= =

ci

horizontal position vector
gas constant; hyperbolic radius
distance normal to wave front (local phase)

reference wing area for force coefficients

(egs. 3, 4)

area distribution of equivalent body of
revolution

integral of VE(i) (eq. 54)
integral of VE(él,T) (eq. 51)

wing thickness

time along ray (eq. 18)

time along aircraft trajectory (eq. 2)
absolute temperature

thrust (eq. 3)

wind velocity (—ux,-u ,0) (eq. 2)

Y
minus components of u in (xl,yl) coordinates

(eq. 15)

aircraft velocity relative to atmosphere, Ma
(eq. 2)

measure of signal invariant on kinematic ray

(eqs. 40O, 45)
weight of aircraft (egs. 3, 4)

fixed coordinate system; east, north, and
above ground, respectively

coordinate system aligned with aircraft
veloclty

coordinate system aligned with wave normal
(eqa. 19)

36
Lo
56
18

b5

58
Lo
26
18
16
18
16

31

17

52

18
16

22

31



X,V ,% local coordinates near aircraft 43

Ixo,yo,zo dummy coordinates near aircraft 43
txl axial coordinate for equivalent body of 45
\ revolution

B Prandtl-Glauert parameter, (M2 - 1)1/2 43
B inverse of atmospheric scale height 59
v aircraft climb angle (eq. 2) 17
Ve ratio of specific heats 16
AP perturbation from undisturbed value 39,28
7 wind heading angle (whence wind blows) 16
) inclination angle of n below horizontal 25

(egs. 10, 17)
i Mach angle, sin_l(l/M) = tan—l(l/B) 22
TR shear and dilatational viscosities (eq. 58) 65
v heading angle of wave normal n (eq. 9) 25
£ linear phase variable (time) (eq. 41) 51
£y actual phase variable (time) (eq. 49) 56
P atmospheric density (eq. 1) 16
T age (eq. 46) 57
[0 azimuth angle of wave normal from vertical plane 22
¢y aircraft bank angle 18
¢r a;imuth angle of wave normal relative to 20
ailrcraft

o local perturbation velocity potential (eq.30) 43
¥ heading angle of aircraft (eq. 2) 17



Subscripts
a aircraft 17

o initial value at time of emission of a ray 32
from aircraft

1 wing )

Vector Components

Vector Coordinate Systems
Name Symbol (x,y,2) (x",y ,-2) (Xl,yl,-z)
Position T X,5,% x',y',-z X155 "2
Horizontal unit,| _
east 1 1,0,0 sin ¥,-cos ¥,0|sin v,-cos v,0
Horizontal unit,| _
north J 0,1,0 cos V¥, sin ¥,0 cos v, sinv,0
'Vertical unit b 0,0,1 0,0,-1 10,0,-1
Horizontal pos- _ O
ition r' x,y,0 x',y , O 1 %1,57,0
Aircraft v V cos v,0,
velocity -V sin v
Initial wave _
normal N, J,m,n cos 6 ,0,
sin ©
o
Wave normal n cos 6,0,sin ©
,EWind u —ux,—-uy,o U, > ~Ug 50
Horizontal unit,| _
propagation ' sin ¥,cos v,0 1,0,0
Inverse phase - _1 ~1
veloclity c.n ¢ ~,0,c _~tan 6
n e o
Ray or group _
velocity c a cos 6 - Up,
~Uy s a sin ©
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THEORETICAL ANALYSIS

General Description

The intent of this section is to present a guilde to the
thgoretical analysis which will be developed in this chapter.
This guide is presented in several subsections. The first gives
a brief description of the nature of sonic boom theory. The next
three discuss certain basic concepts of geometric acoustics, with
one purpose being that of explaining the basis for the assumption
of steady ray geometry on which the entire analysis is based. The

last describes the detailed analysis in digest form, egssentially
section by section,

The nature of sonic boom theory.- Sonic boom is an acoustic
phenomenon. The appropriate theory for sonic boom propagation is
an acoustic theory with both simplifications and complications
which do -not normally appear in acoustic theory. With certaln
exceptions, the appropriate theory is the theory of geometric
acoustics, analogous to geometric optics. The theory of geometric
acoustics is valid in an asymptotic sense when the wave length 1is
small compared with characteristic macroscopic scales of the
problem. Such macroscopic scales include the radii of curvature
of the wave fronts and the scale height (e.g., p/pg) of the atmos-
phere. (Symbols are defined in the list of SYMBOLS.) Geometric
scoustics is invalid in the region near the aircraft, where a
separate treatment is needed to obtain initial conditions for the
propagated signal.

Standard acoustic theories are l1inear. In sonic boom propa-
gation, nonlinear effects are locally very weak, but they have a
nonnegligible cumulative effect during propagation over large
distances. The cumulative nonlinear effect comprises distortion
of the signal and the production of shock waves. We can thus
describe sonic boom theory as an application of geometric gacoustics,
with a particular matching theory for initial conditions and with
a modification for nonlinear effects. A recent review of the
theoretical approach to sonic boom which is here developed 1in
detail may be found 1n reference 1.

In any sonic boom theory with the generality of the theory
presented here, the concepts of galilean transformations and of
phase necessarily appear. These concepts are discussed below.

Coordinate systems and galilean transformations.- Two prin-
cipal coordinate systems are required in our theory. One 1s an
unaccelerated coordinate system fixed relative to the ground, and
the propagation through the atmosphere is treated in this coordi-
nate system. The other, defined locally at a particular instant,
is an unaccelerated coordinate system aligned with the aircraft




flight axis and moving with the aircraft velocity at the instant
of interest. The flow near the aircraft is conveniently described
in this coordinate system. These two coordinate systems are
related through a galilean transformation. A galilean transform-
ation is a transformation from one unaccelerated coordinate system
to another moving relative to the first at a constant velocity. A
quantity is galilean invariant if it does not change under a
galilean transformation.

In one particular step of the analysis the consideration of
the galilean transformation is inescapable. This step appears
when the variables describing the (local) flow near the aircraft
are transformed into the appropriate variables describing the
(global) acoustic propagation in the coordinate system fixed rela-
tive to the ground. In this critical step we shall avoid going
through the formal details of the galilean transformation. Instead
we ldentify corresponding variables which are inherently galilean
invariant; by relating these to both the local and global variables
of the problem, we are able to connect the local with the global
variables. This stratagem simplifies this critical step consid-
erabdly and, in effect, accomplishes the inescapable galilean
transformation in a relatively easy way. No other feasible way of
relating the local and global variables was discovered.

In this report we are concerned primarily with the case of a
horizontally stratified atmosphere with winds. Such an atmosphere
remains horizontally stratified under g horizontal galilean trans-
formation, one in which the relative velocity is horizontal.
Hence, any theory for this case must be invariant under such a
transformation. This property has been used in the development of
the analysis presented here to check it for algebraic consistency.

In general, consideration of which variables are galilean in-
variant was of great help in the development of the analysis
presented in this report. A quantity which is galilean invariant
is independent of the choice of coordinate system. It is found
that the analysis is simpler, both algebraically and conceptually,
when such variables are chosen to describe the solution. Thus the
consideration of galilean invariance has guided the general course
of the analysis and the specific choice of variables used.

In this report, we mention in a number of places whether
particular variables are or are not galilean invariant. Except in
the critical step mentioned above, the reader uninterested in this
property may ignore the mention. In the critical step where the
galilean transformation is inescapable, the galilean invariance of
the pertinent variables is essential to the analysis. This step
appears in the section entitled Geometric Acoustics and Blokhint-
sev Invariance.

10



Wave fronts and phase.- According to the basic concepts of
acoustics, the signal is propagated on wave fronts. Wave fronts
are surfaces that move through space and are characteristic
surfaces for the complete hydrodynamic equations (more precisely,
they are characteristic hypersurfaces in space—time). A wave
system includes & one-parameter family of wave fronts. A variable
that parametrizes the wave fronts is termed a phase. Accordingly,
the phase 1is the principal independent variable in terms of which
an acoustic signal or pressure signature 1s described. Any mono-
tonic differentiable function of a phase variable ig also a phase
variable, as it will serve equally well to parametrize the wave
fronts. Since the only purpose of the phase 1is to label wave
fronts, what its dimensions may be 1is unimportant. A phase may be
chosen to be dimensionless Or to have the dimensions of time or
distance, as may be convenient.

As defined, the phase parametrizes the wave fronts over the
entire history of the wave Propagation and is, in this sense, &
global variable. The word 'phase" used alone refers to this global
concept, although to emphasize this property we occasionally use
the term global phase. It is convenient to distinguish from this
concept the concept of a local phase, defined to be any variable
in terms of which an acoustic signal may Dbe expressed locally. A
local phase is not generally a phase in the global sense. A micro-
phone fixed in space records pressure as a function of time as a
wave system goes by. Thus, time measured from the passage of a
reference wave front is & phase variable, one that turns out to be
global as well as 1local in a steady atmosphere; this particular
variable 1s the one we shall use in our general treatment of
geometric acoustics. Distance measured at a given instant normal
to the wave fronts from a reference wave front is a suitable local
phase, Distance aft of a reference Mach cone in a coordinate
system fixed with respect to the aircraft is another local phase,
and is the one we shall use in treating the flow near the aircraft.

To illustrate the distinction between phase and a local phase,
we consider the particular variable distance normal to wave fronts.
The distance between two wave fronts in an atmosphere elther with
winds or with nonuniform speed of sound does not remain constant
as the fronts move. A wave front 10 feet from the reference front
at one time will be gifferent from the front found 10 feet from
the reference front at some different time. Thus, distance from
the reference front is not a global phase, even though it can be
used as a local phase.

The reason the concept of phase 1is important is that we must
correctly identify the wave fronts over the entire history of the
wave propagation. A phase variable, correctly defined globally,
serves precisely this purpose. In our presentation of the theore-
tical analysis, we use two local phases (L/Lg and s ) as well as
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a basic global one (€). we may note that in the general case in
which the atmospheric properties change with time, it is impossible
to use a physically defined entity (e.g., time measured by a fixed
observer) as the (global) phase. In this case the phase must be
defined as a variable in its own right, with no generally valid
physical interpretation.

We pick a particular reference wave front as the front of zero
phase. This wave front is a surface in space which is tangent at
the aircraft to the Mach cone with vertex at some specified
reference point on the aircraft axis. Such a surface is termed a
Mach conoid., For convenience, we consider the reference point to
be at the nose of the aircraft, Other points on the aircraft axis
are at the vertices of Mach conoids or wave fronts of different
phase. These concepts are discussed further in the section on
Mach Conoids and Ground Intersections.

Geometric acoustics and rays.- The basic concept of geometric
acoustics is that the signal is propagated along rays. Rays are
trajectories of points moving in space. Each ray moves with a wave

front, and the concept of the propagation of a signal on rays is
consistent with that of its propagation on wave fronts., Since g
ray is a point trajectory, that i1s, a specification of the motion
of a point with time, it is a kinematic rather than a geometric
entity. Where it appears desirable to emphasize this character, we
term a ray a kinematic ray. The path of a ray is a geometric
entity. When a number of rays traverse the same path, we term the
path a geometric ray. Since phase is constant on each wave front
and each ray moves with a wave front, phase is also constant on
rays. In a general solution the rays form a three-parameter family
of point trajectories. The three parameters are analogous to
Lagrangian coordinates for particles moving in a fluid flow. One
of the parameters is the phase, while the other two are selected to
be an azimuth angle ¢ and a time ty (to be defined later),

In general, the rays corresponding to values of the phase
other than zero do not follow the same paths through space as do
the rays for which the phase is zero. An important sSpecial case is
that in which the ray geometry is steady, in which every ray path
is the path for a one-parameter family of kinematic rays. In this
case the ray paths are what we have termed geometric rays which
form a two-parameter family of curves in space. In applying the
analogy to particles moving in a fluid flow to this case, the flow
is assumed steady, with the geometric rays then analogous to
streamlines. The property of steady ray geometry is not galilean
invariant, and this fact indicates that the assumption of this
property must be made with care.

Historically, for the most part only this special case has
been considered. Moving sources are rarely considered in geometric
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optics; moving acoustic sources are generally treated in a coord-
inate frame in which they are fixed and, generally, only aircraft
in steady flight have been considered as generators of sonic boom.
Thus, historically, rays have been considered primarily as geo-
metric entities.

We make the assumption of steady ray geometry in the sonic
boom problem, with tg and ¢ as the parameters for the geometric
rays. This assumption 1is justified by the thinness of the entire
wave system of interest, essentially by the fact that the aircraft
length is small compared with other macroscopic characteristic
scales. A ray emanating from the tail is simply so close to the
corresponding one of zero phase that the difference in thelir ray
paths may be neglected. If L 1s a measure of the thickness of
the wave system and R a macroscoplic scale measure, the required
condition is Lg/R <K 1 . If A is a measure of the character-
istic wave length of the acoustic signal, it 1s the condition
A/R << 1 which justifies geometric acoustics. The sonic boom
problem is unique among acoustic problems in having A = Lg, with
the consequence that the steady-ray-geometry assumption is valid
when geometric acoustics is valid. Thus this assumption is sound
even though the problem with a maneuvering aircraft 1is not a
steady one.

This assumption 1s basic to our analysis. It permits our
calculating only the two-parameter family of rays corresponding to
zero phase, considering the aircraft to be a single moving point in
space. Another basic assumption 1is that the cumulative nonlinear
effects do not affect the ray geometry. This 1s discussed later
when we treat the nonlinear distortion. Hence, ray calculations

follow linear theory.

Besides the concepts of wave fronts, phase, and rays, another
basic concept in geometric acoustics is that of ray tubes and ray-
tube areas. Although ray tubes may be defined in the general case,
they are much easier to visualize with the steady-ray-geometry
assumption. In the neighborhood of a given geometric ray, we
visualize a tube of geometric rays, i.e., a ray tube. The corres-
ponding entity in the analogous steady fluid flow is a streamtube.
A ray-tube area 1s a measure of the differential area intercepted
by a surface cutting the ray tube and may be considered a vector
quantity. Like a streamtube, a ray tube is a differential quantity,
and a ray-tube area 1is actually defined in terms of derivatives
with respect to the ray parameters.

An element that greatly simplifies the calculation is the
assumption that the atmosphere with its winds is horizontally
stratified (layered). A refraction law of the type of Snell's law
in geometric optics then holds. This law permits the calculation
of both the rays and corresponding ray-tube areas by gquadratures.

13



Digest of the theoretical analysis.- We turn now to a general
description of our analysis of sonic boom, the details of which are
presented in the subsequent sections of this chapter. The analysis
may be conceptually divided into three main parts which will appear
in sections of the chapter preceded by a short section on The
Atmosphere; at the end we add a Note on Viscous Effects. The first
part of the analysis comprises the sections entitled Aircraft
Maneuvers, Initial Wave Normals, Mach Conoids and Ground Inter-
sections, Snell's Law and Ray Tracing, and Ray-Tube Area. Tt con-
cerns the calculation of the rays and ray-tube areas for zero phase
(the reference phase). The second part comprises the sections
entitled Flow Near the Alrcraft, and Geometric Acoustics and Blok-
hintsev Invariance. It concerns the calculation by linear theory
of' acoustic signals along each geometric ray. The third part
comprises the sections entitled Signal Distortion and Age Variable,
and Shock Location. It concerns the calculation, with shocks
properly accounted for, of the nonlinear distortion of the signal,
A number of vector quantities are introduced and used in the
analysis. The components of these vectors in the various coordi-
nate systems used are given in the section entitled SYMBOLS, Vector
Components.

The maneuver of the aircraft (strictly speaking, of the refer-
ence point) is required in detail. Variables are introduced in the
section on Aircraft Maneuvers which describe the trajectory in
space, the orientation of the flight axis, the velocity of the air-
craft relative to the local atmosphere, and the local sound Speed,
all as functions of time g . Time derivatives of certain of the
variables are also determined, for later use in the ray-tube area
calculation., At each instant tg we visualize a Mach cone attached
to the nose of the aircraft. Tho normals to the Mach cone form a
one-parameter family of directions forming a wave-normal cone with
the parameter being an azimuth angle ¢ . The two quantities tg
and ¢ are the ray parameters discussed earlier.

In the section Mach Conoids and Ground Intersections, the wave
fronts and rays from an aircraft in maneuvering flight are dis-
cussed generally, with particular attention to the intersections of
the rays and wave fronts with the ground,

The generators of the wave-normal cone at the aircraft are the
initial wave normals for the calculation of the rays. The orien-
tation of these normals is known as a function of the ray para-
meters, For each wave normal we calculate two quantities which are
invariant on rays according to the appropriate Snell's law, These
invariants are then used to calculate the ray trajectories.

The ray-tube area is defined as that given by horizontal
cutting planes. An analytic expression for this area is obtained

14



in terms of the maneuver variables, certain of their time deriva-
tives, and three quadratures along the ray. The ray-tube area is
thus obtained as a function of altitude along each ray and may be
caleulated concurrently with the ray trajectory.

Tor the second part of the analysis (Flow Near the Aircraft,
Geometric Acoustics and Blokhintsev Invariance), we consider first
the flow close to the aircraft. In particular, we need the asymp-
totic form of the local solution, valid at a distance from the
flight axis large compared with the effective lateral dimensions
of the aircraft but small compared with characteristic scales for
the atmosphere. This asymptotic form of the local solution is
interpretable as a geometric acoustics solution. At a sufficiently
large distance r 1n a particular direction away from the flight
axis of the aircraft, the solution appears the same as that from a
1line distribution of sources and sinks, the same as that from an
equivalent body of revolution. The pressureg perturbation in the
asymptotic solution is proportional to I~ times a function F
of a suitable defined phase and of an azimuth angle ¢ (simply
related to ¢ ). This F-function depends also upon the Mach number
and 1ift coefficient of the ailrcraft, which are functions of the
time tg . The F-function is then a function of phase and of the
ray parameters tg and ¢ and is invariant along each kinematic
ray. 1t is obtainable either by a computation (outlined here in
the section Flow Near the Aircraft) or from experiment. It 1is
assumed to be a known function in the computer program.

Tn the general stratified atmosphere with winds, the appro-
priate general definition of phase is as the time £ measured by
an observer fixed 1in a ground-based coordinate system and defined
to be zero the instant the zero-phase wave front passes. Invar-
iance results of Blokhintsev permit the acoustic signal of each
ray to be described in terms of a function V_(€) which 1s
constant on the ray.

The relation between the local and general phase variables 1is
then found so that F may be expressed as & function of £ . The
relation between the function F and Vg 1s also found, which
then gives the function V(&) for each ray (since F 1s assumed
known). The relation betwéen Ve and pressure perturbation AD
is known, so that Ap(€) is determined at any point on each
geometric ray.

In the third part of the analysis (Signal Distortion and Age
Variable, Shock Location), we consider the change in propagation
speed proportional to the strength of the signal. This nonlinear
effect does not, in principle, influence the magnitude of the
pressure perturbation in the acoustic signal. Rather it causes
phase shifts 1n the signal, whereby a given point in the signature
may appear earlier or later than predicted by the linear theory.
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This phase distortion arises because compression waves travel
slightly faster, and expansion waves slightly slower, than do
infinitesimal disturbances. In terms of the phase variable ¢ s
this phase shift equals Ve times an age variable T which can
be computed along each ray by a quadrature., The distorted signal
appears as the original one Vé(&) sheared by an amount propor-
tional to =

The distorted signal may be multivalued and may thus give
several values of the pressure perturbation for a single value of
£ . Physically, this anomaly indicates the presence of shock
waves and disappears when shocks are properly taken into account.
A separate analysis shows where shock waves must lie and shows
which parts of the signature have been "eaten up" by the shocks
and no longer appear. The result of the analysis is the complete,
single-valued pressure signature at any desired point, with
shocks shown if they are present. The nonlinear effect does
affect the magnitude of the pressure perturbation insofar as the
parts of the original signal that are eaten up by shocks no
longer appear.

The theory fails near a caustic, a surface in space at which
the ray-tube area becomes zero, It also fails near the boundary
of a shadow zone into which no rays penetrate and may fail near a
critical ray for which the F-function is singular in some way.

The linear solutions in these regions are solutions to diffraction
problems for which geometric acoustics is invalid. These problems
are outside the scope of the analysis of this report.

The Atmosphere

The coordinate system used is cartesian with x and y
horizontal distances east and north, respectively, from a refer-
ence origin on the ground. The ground 1is assumed level at an
altitude Hy above sea level, and z is altitude above the
ground. The atmosphere is assumed to be a calorically perfect gas
(constant specific heat ratio ye) with the thermodynamic proper-
ties temperature T i density p , pressure P = RTp , and speed
of sound a = (vygRT) /2 given as functions of altitude. The
pressure obeys the hydrostatic law

d
= = -pg (1)

with g the acceleration due to gravity. Winds are horizontal
with magnitude wu and direction dependent only upon 2z . The
wind direction is specified by the wind heading angle mn  measured
clockwise from north. In accord with ancient historical conven-
tion, the wind heading is taken as the direction from which the
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wind comes ("the north wind doth plow"), and we have acceded to
this convention. The velocity of the wind has east and north com-
ponents (—uX,—uy) with

u, = u sin 7
u._ = u cos
v T
Application in the program. - Inputs into the program include

the temperature T , cither the density p or the pressure D ,
the wind speed u , and the wind heading angle 1 gilven as
functions of the altitude 2z + H above sea level., Also input 1is
the ground altitude Hg . An opgion provides for specification of
the 1962 U.S. Standard Atmosphere (ref. 2) with any wind distri-
bution.

There 1s no provision in the prograim to ensure that the hydro-
static relation (1) is satisfied. Hydrostatic consistency of the
input data is the responsibility of the operator.

Aircraft Maneuvers

Tn our study of sonic boom, we need the trajectory of the air-
craft in order to know where the rays start. The equations to be
integrated for the aircraft trajectory, if it is not specified, are
presented in this section. The time derivatives of heading angle,
climb angle, and aircraft velocity or Mach number are needed later
in the calculation of ray-tube area. Equations permitting the
calculation of these derivatives from the aircraft load factors are

also included here.

The aircraft moves through space supersonically on some known
trajectory. This trajectory 1is described by the coordinates
x5 (ta), valta), and z5(tg) of a reference point on the aircraft,
which we choose to be the aircraft nose. The subscript a
identifies varilables defining the aircraft position in a ground-
rixed coordinate system.

The first stage of our analysis is an investigation of the
equations governing the trajectory of the aircraft. The aircraft
has velocity ¥V measured 1n a coordinate system in which the local
atmosphere is at rest (i.e., in a coordinate system moving with the
wind velocity). This velocity has magnitude V , a heading angle
¥ measured clockwise from north, and a climb angle -y above the
horizontal. The direction of 'V at any instant 1is termed the
flight axis.

With respect to the ground-fixed coordinate system, the diff-
erential equations for the flight trajectory are then

17



g6 = V cos v sin ¢ - uX(za)

g5 = V cos v cos ¥ - uy(za) (2)

V sin vy

If V, v, and ¥ are known functions of ty , we can integrate
the third equation to obtain z5(ty), and then obtain Xg and
Yg by integrating the other two.

The acceleration of the aircraft is equal to the net force
divided by the aircraft mass W/g. The component along the flight
path is (nT - 8in vy)g, where np  is a net thrust load factor
defined by

ap = (T - D)/W = (Cp - Cp)a S, /W (3)

with T and D representing the thrust and drag on the aircraft,
respectively, Cp and Cp the thrust and drag coefficients, Qoo
the dynamic pressure (l/2)pV2 » and  Spngp the aerodynamic
reference area. The quantity g cos vy "is a component of the
acceleration due to gravity acting laterally, or normal to the
flight direction.

The aircraft is assumed to be laterally symmetric, without
Side forces, and to be banked at an angle ¢4 about the flight
axis. The 1ift on the aircraft then provides a normal accelera-
tion component nrg , where ny, is the 1ift load factor defined

by
O T LA = CLquref/w (4)

where L and Cr, represent the 1ift and 1ift coefficient, respect-
ively. This is directed so that nrg cos ¢ opposes the gravity
component g cos y , while nrg sin ¢5 1is horizontal, Figure 1
shows the acceleration components while figure 2 shows how Pgq 1s
defined and shows the lateral acceleration components. The coord-
inate frame (x',y',z) is rotated T/2 - ¥ counterclockwise
relative to the reference frame (x,y,2z) and is used later to
develop wave propagation directions.
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Figure 2. View looking forward along flight axis showing
acceleration components, bank angle, and azimuth angle.

(nT - sin v)g = sin v

Carrying out the differentiation with respect to ta » We then

obtain
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aw dza du duX
V cos ¥ g = 48 sin ¢a - I sin ¥ EEX - cos ¥ 3z >
a a

Y %1— = (nL cos ¢, - cos v)g
a
(5)
dza duy du
- 5?; sin v<cos Y T + sin ¥ Iz >
av : 0zq MY 4 sin g ox
a€; = (nT - sin v)g + JT, cos cos U gz> * sin 1 g§—>

The factor dz,/dty; 1s, from (2), simply V sin vy . Equations
(5) relate the two load factors nrp, and np with the time deri-
vatives of ¢ , v , and V .

Although they are not directly involved in the aircraft dynam-
ics, the speed of sound a and the aircraft Mach number M = V/a
are convenient to use in the acoustic analyses. The speed of sound
is obtained from

a = (yrr)Y/2 (6)

The gradient of the speed of sound satisfies the relation

The time derivative of V = Ma may then be expressed as

daz
qv au
i =
a a a
B dM 2 s da
- a(a%; -2 sin v §2) (7)

21



Application in the program.- Inputs into the program include
v, v >, and M as functions of the time t_, . Equations (2) are
integrated to obtain the aircraft trajectory. The time derivatives
of ¥y , v , and M (actually of the Mach angle pu = sin=L(1/M)
are required later in the program for the ray-tube area calculation
and, for this purpose, two Maneuver Options are provided. In the
first option, the load factors ny, and np are additional inputs,
and the time derivatives are calculated from equations (5) and (7).
In the second option, the time derivatives are calculated directly
within the program by differentiating the input data.

The purpose of including Maneuver Option 1 is to provide a
more accurate calculation of the time derivatives in case the load
factors are accurately known, as perhaps from accelerometer data
from a flight test. In this option, the input data are redundant,
and it is the responsibility of the operator to ensure that they
are reasonably consistent.

Initial Wave Normals

The purpose of this section is to express the initial orienta-
tion of the wave fronts as they leave the aircraft. This initial
orientation gives the basic parameters needed for the ray calcu-
lation.

Here we have an example of the principle discussed earlier of
using galilean invariance to identify the variables which are
preferable for use in the analysis. The wave normals are the ray
directions in one particular coordinate system, that fixed in the
undisturbed atmosphere at the aircraft altitude. Ray directions
are not galilean invariant, while wave front shapes and wave
normals are. The use of wave normals rather than ray directions to
define the basic variables keeps the analysis in its simplest form.

With each instant of time tg during the aircraft flight, we
associate a Mach cone with vertex located on a given reference
point on the aircraft. This Mach cone is tangent to the Mach
conoid (wave front) moving with the aircraft. The normals to the
Mach cone at the vertex form a wave normal cone. We consider an
instantaneous coordinate system (x',y',z) for purposes of descri-
bing direction only (fig. 1), rotated an angle T7/2 - ¥ counter-
clockwise relative to the basic coordinate system, with origin at
the reference point on the aircraft. The two cones are illustrated
in this coordinate system in figure 3. The half-angle of the wave
normal cone is the complement of the Mach angle

An arbitrary azimuth angle ¢ is chosen, measured according
to a right-hand rule about the flight axis from the downward
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wave normal cone

Mach cone

\\?lo
initial wave

normal

diameter
in (x,z) plane

(a) Sketch showing wave normal cone and one wave normal.

1
Yy

north

X, east

(b) Plan view showing projection of wave normal.

Geometry of initial wave normal directions, showing

Figure 3.
coordinate axis orientation.
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f = sin p cos y + cos p sin vy COs ¢

m cos W sin ¢ (8)

il

n

- sin pu sin y + cos g cos 7y cos ¢

using the law of cosines to obtain £ and n and the law of sines
for a right triangle to obtain m . Essentially the same results
are obtained in Appendix IV of reference 3. The downward or (-2)
axis is used here because we want to consider primarily descending
acoustic signals and rays.

The angle v 1s defined as the heading angle of the wave
normal (fig. 3(b)), and the angle 0O, 1s defined as the angle of
the wave normal below the horizontal (fig. 4). Using these defini-
tions, m/4 = tan (¥ - v) and n = sin 85 . With equations (8),
these yilield

-1 cos W sin ¢ )
Vo= -
v tan {sin L cos Y + cos W sin ¥ cos ¢ (9)
and
sin GO = - sin p sin y + cos W cos Y cos ¢ = n (10)

The maneuver history of the alrcraft provides p and vy , SO that
these equations give v and 65 as functions of the two ray para-
meters ty; and £ . We note that

4 = cos 6 cos (v - v)

B
Il

cos 6_ sin (v - V)

Another coordinate system (xl,yl,z) is shown in figure 3 and
is aligned with a particular wave normal. This coordinate system
is not used in this section but is used below in the treatment of
ray tracing and ray-tube areas.

Application in the program.- Using the known values of ¥ ,
v , and M , the gquantities v and sin 6, are calculated from
equations (9) and (10) as functions of the ray parameters tg
and ¢ .
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Mach Conoids and Ground Intersections

At this point we are ready to calculate the rays. The purpose
of this section is to describe the rays and the Mach conoids (wave
fronts) in general terms before going into the detailed calculation
of the rays. The intent also is to show the functions needed to
describe the rays and wave fronts globally and needed to determine
when and where the sonic boom signals hit the ground. The primary
purpose of the section is, thus, largely conceptual, and the reader
primarily concerned with the algorithm may skip the section.

As the aircraft moves through space, a wave system associated
with the aircraft moves with it and propagates away from the flight
path. The wave system, which consists of a one-parameter family of
wave fronts, is characterized by a single wave front chosen here
to be the one of zero phase. This wave front is attached to the
aircraft at the reference point on the aircraft and is tangent to
the Mach cone associated with this point. The front is the same as
the Mach cone only in the special case of straight flight at
constant speed in an atmosphere of uniform temperature. This
reference wave front is termed the reference Mach conoid and is
shown schematically in figure 5,

The reference wave fronts or Mach conoids are not calculated
directly. What we calculate are the kinematic rays corresponding
to that wave front, which here are the rays of zero phase. With
the basic assumption discussed in the section General Description,
the ray paths for these rays are also those for other values of the
phase and have been termed geometric rays.

The rays are specified by three functions giving x , y , and
z as functions of tg » & , and t . Here t 1is the time on
the ray, while ty, and ¢ are the ray parameters defined in the
preceding section. In a stratified atmosphere we replace t by
z as Independent variable. The ray is then specified by the two
functions x(tg,¢,z) and v(ta,%,z) describing the ray path (or
geometric ray), together with the function t(ta,%,2) giving time
along the ray. The calculation of these functions is described in
the following section. The ray paths for a given time tg of
emission are illustrated schematically in figure 5, shown here as
straight lines. In the general case, they are curved lines.

The ground is at =z = O . The solid ground intersection curve
in figure 5 is given by the functions x(ta,9,0) and y(tg,9,0)
for a given emission time tg . The time of arrival of the signal

on this ground intersection curve is not constant and is given by
the function t(t,,¢,0)

The wave fronts or Mach conoids are surfaces of constant t
An inversion of the function t(tg,$,z) gives a function to(d,2,t).
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variable t . These ground intersection curves, together with
corresponding maximum values of the pressure in the final signature,
are part of the output.

Snell's Law and Ray Tracing

The purpose of this section is to present the appropriate
Snell's law for geometric acoustic propagation in a stratified
atmosphere and to derive with this law the equations whose quadra-
ture gives the rays.

In acoustic theory a signal on acoustic disturbance is propa-
gated on a moving wave front. (From the mathematical point of
view, a wave front is a characteristic hypersurface in four-dimen-
sional space-time for the full equations of motion.) It moves in
such a way that its normal velocity relative to the medium is the
speed of sound., Its actual normal velocity in space is

c_=a +n - u (11)

where n 1s a unit vector normal to the surface pointing in the
direction of propagation and U is the vector velocity of the
undisturbed medium (wind vector),

A signal initiated at one instant from a point is found a
short time 6t Ilater_within a spherelet of radius adét whose
center is displaced udt from the original point. If every point
on a wave front emits a signal at a given instant, Huygen's prin-
ciple identifies one of the two envelopes of the spherelets 6t
later as the wave front at that time (the other envelope corres-
ponds to -n and is usually without meaning). This principle
glves a motion to the wave front in accord with equation (11).

In geometric acoustics, the concept of a ray 1s fundamental.
A ray is a point trajectory and may be defined

(a) as a characteristic in an asymptotic development of the
equations of motion for small wave length;

(b) as a bicharacteristic for the full equations of motion,
corresponding to the wave front as a characteristic
hypersurface;

(c) to move from the point of emission of a spherelet to the
point of tangency of the spherelet with the envelope
wave front at a time 6t later.

Any of these definitions leads to the result that the ray is a
trajectory of a point that moves with the velocity
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af

= Cc =an + u (12)
at

where r = xI + yJ + zk 1s the position vector of the point and

i, j, and k are cartesian unit vectors. This veloclty 1is
termed the ray veloclty or group velocity. In geometric acoustics,
the signal 1s propagated along rays with this velocity. DNote that
c_ =n . ¢

n

Besides the ray or group veloclty, an important entity is the
slowness vector or inverse phase velocility n/cn . This entity i1s
more familiar in geometric optics than in geometric acoustics,
primarily because the subject of geometric optics has been SO
thoroughly studied and applied to practical problems.

In order to calculate rays, it is necessary to know how the
wave normal vector n changes along rays. A general refraction
law may be derived (see ref. 4, for example) which states that

dn _ va + (va) . n -nfn - Vva +n - (va) - n] (13)

dat

along a ray. The combination of equations (12) and (13) is a
system of differential equations which must be solved to obtain
the ray.

In the case treated herein of a steady horizontally strati-
fied atmosphere, the calculation of a ray is much simpler. A part-
icular refraction law or Snell's law is available which gives n
explicitly along a ray (see ref. 5, for example). This "Snell's
law", stated in its most general form, 1s that the horizontal vector
component of the inverse phase velocity vector n/c, 1s constant
along each ray. We decompose I into horizontal and vertical
components according to

5 = cos 60 - sin 6k

where n' _is a horizontal unit vector. The angle ©6 1s the
angle of n below the horizontal. Our Snell's law then states

that the horizontal vector cos GiEVC is constant along each ray
(see figs. 6 and 7). We define the velocity ¢, @&s
°n
© = Tos @ (1%)
in terms of which the invariant horizontal vector 1s cslﬁ‘ The

initial value of 6 when the ray is emitted from the aircraft is
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Planview

Sideview

Figure ©, Propagation velocity plot.
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Figure 7. Oblique view of velocity plot.

the angle 6, _defined by equation (10). The quantity cg, and the

direction of n are thus invariant along each ray. The direction
or heading angle of 4' is denoted v 1in accord with the notation
of the previous section. The two invariants c¢o and Vv are

functions co(tg,¢) and v(ty,9) of the two ray parameters.

We introduce a coordinate system (x ,yl,—z) aligned so that
the wave normal n 1lies in the (x1,-z) plané (see fig. 3(Db)).
This system is one rotated an angle &7 - V counterclockwise
relative to the basic coordinate system. The main use of this coor-
dinate system will be 1n the following section, in the calculation
of ray-tube area.

The wind vector u has components (-uy,-uy) in the (x,¥)
frame and components (-u,,-ug) in the (x1,91) frame with

u
n

u cos (v - m) =u, sin v + ug, cos v

(15)

Il

ug = u sin (v - m) =-u, cos v +u, sinwv

The minus signs before the components come from the ancient wind
convention mentioned earlier. Note that uw - n = -u, COS C
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For each initial wave normal (and corresponding value of ¢ )
in the wave normal cone at the ailrcraft, there is one corresponding
ray, The value of v for this ray is that obtained from equation
(9). We obtain Cqo for the ray from the expression

0 0 o 0 0 6
© cos 04 cos 6, cos 64 o

where cos 6, 1s obtained through equation (10) and the subscript
O denotes conditions at the initiation of the ray at the aircraft,
At any other altitude, with Co and v known, the angle 6 may
be calculated from

cos 6 = 5 i(ii(zf (17)

Thus 6 is known as a function of o » ¥V , and z and thereby as
a function of tg » ¢ , and =z . Figures 6 and 7 show the relation
between Co » 6, and a and the wind components -u, and -u. .
The wave front appears edge-on in the (Xl,Z) plot. Note that the
wind component -uy tangential to the wave front does affect ¢
but has no effect on the Snell's law,

In order to carry out the ray tracing (to calculate the rays),
we need to integrate the following equations (see figs. 6 and 7):

ax

1
T = a cos 6 - u,
S
dt t
a(=z) = a sin 6
at
These equations are components of the vector equation (12), The

independent variable is changed from t to -z ; 8lving the
equations

dxl B a cos 6 - un
a(-z) = a sin 0O
ayq ~Uy

d(-z) ~ 3 sin @
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A transformation from (x1,y1) to (x,y) gives the desired ray
equations

dx B a cos 6 sin v - Uy
da(-z) ~ a sin ©
a cos 6 cos v - Uu
v r (18)
d(-z) a sin ©
at 1

d(-z) a sin 6

With a downward propagating ray (sin 8 > 0), the integration of

equations (18) is carried out in the -z direction from the ini-
tial point (z = 23 , X =Xag » ¥ =7JYa t = tg) to the ground
(z = 0). The functions sin 6 and cos 6 are obtained as

functions of =z from equation (17).

Equations (18) are the basic equations of this section as they
yield the rays by quadratures. BY integrating them we obtain the
functions x(tg,9,2), y(tg,9,z), and t(tg,¢,z) discussed in the
preceding section. The equations immediately preceding equations
(18) (in terms of x3 and y1) may be expressed with a minor
modification to take neighboring rays into account. The ray
equations in this form are more convenient than equations (18) for
computing ray-tube areas and will be used for this purpose.

Application in the program.- In the program, for the selected
values of the ray parameters (ta,¢) , Co 18 calculated from
equation (16) with wu,, obtained from equation (15). Equations
(18) are then integrated for the rays with 6 obtained from
equation (17). Only downward propagating rays are calculated, and
the calculation is stopped when the ray 1is approximately horizontal

Historical note.- The refraction law of the type of Snell's
law, equation (14) or (17), was given by Lord Rayleigh in 1878
(Sect. 289 of ref. 6) in planar flow. Rayleigh did not distinguish
between wave normals and rays, however. Barton, in 1901 (ref. 7),
noted that the correct ray propagation velocity was not in the wave
normal direction. He gave the correct planar ray tracing equations
with examples. Fujiwhara, in 1912 (ref. 8), gave the correct
Spnell's law in three dimensions and the corresponding ray tracing
equations (18) with examples. Emden (ref. 9) identified the ray in
terms of energy transport without defining the energy.
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Ray-Tube Area

The purpose of this section is to obtain an expression for
ray-tube area along the rays. The ray-tube area is needed sSubse-
quently in the analysis in order to express the acoustic signal
quantitatively, and also thereby to calculate the nonlinear
distortion.

A ray tube is a differential concept, to be visualized as a
tube made up of rays which are differentially close to the parti-
cular ray being investigated. The actual cross-sectional area of
such a tube is thus also a differential Quantity. The quantity
which we term ray-tube area is a finite measure of such a differ-
ential area and not actually a physically identifiable area.,
Multiplying any ray-tube area by a constant factor will make no
difference in the final results of the analysis. A consequence of
this fact is that the dimensions assigned to the ray-tube area are
completely unimportant and may be changed through such a factor to
sult our convenience. The invariance of the final result to a
multiplication of the ray-tube area by an arbitrary constant factor
was used as a check of the analysis.

In our case, we use the (xl,yl,—z) coordinate system intro-
duced earlier, corresponding to thé particular angle v = v, for
the reference ray, with the rays parametrized in terms of the ray
parameters ta and ¢ . Our use of Snell's law for a stratified
atmosphere directs the use of horizontal cutting planes with the
vector ray-tube area directed in the direction of the -z axis. We
can visualize a differential ray-tube area as the quadrilateral
area on a plane gz = constant, determined by the rays with para-
meters (ta,¢) , (tg + 6t5,0) , (ta,¢ + 6¢) , and (ta + 6tg,¢ + 60)
as illustrated in figure %. This differential area is 6taé¢
times the Jacobian of (xl,yl) with respect to (tg,9) . We
define the ray-tube area ~A " as

Bxl Byl
3ty dt,
1
A(t,,¢,2) = = (19)
o
Bxl Byl
3¢ ¢
in terms of the functions x1(tg,%,2z) and v1(tg,¢,2z). These we
may conceive of as obtained by a rotation of ir - v from the
functions x(tg,¢,z) and v(ta,®,z) that were” obtained from
integrating equations (1 ). The analysis is much simpler in this

form. The factor cgl is included in the definition of A so as
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Aircraft flight path

Differential
ray-tube area

z = constant

Neighboring ray
¢ + 00)

Neighboring ray
(t, + oty »¢)

Reference ray Neighboring ray
(tayq)) (ta’¢+ 5(1))

Figure 8. Sketch showing ray-tube area.

to make the subsequent formulas simpler; the factor cgl here,
incidentally, makes A galilean invariant. Note that A has
dimensions of length in this definition. We shall evaluate (19)

by expressing the terms in the Jacoblan as integrals taken downward
along the ray and eventually arrive at the expression (26) below.

A few authors have defined entities analogous to ray-tube area
in terms of Jacobians. 1In the acoustic stratified case, an identi-
fication equivalent to that of equation (19) was glven by Lighthill
(ref. 10). The recognition that the area may be obtained by quad-
ratures and the area calculation in these terms is new in the
present analysis. This treatment of ray-tube areas, developed in
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Somewhat more general terms, may also be found in reference 4,
(Our analysis may be considered g special case of a general
approach to calculating Jacobians of analogous type for general
wave propagation; a paper on this subject by the first author is
being prepared,)

The terms in the Jacobian of equation (19) are to be expressed
as initial values plus integrals along the ray from z = z4 = Zg .
The initial values (at the point of emlssion of the rays) of the ¢
derivatives are zero. The initial values of 0x3/0ty and dy1/dtg
are not zero., They form a horizontal vector Bf'/ata (shown in
fig. 8 multiplied by 6ty ) where

We rewrite equation (19) in the form

o) () (21 o Gy
c a0 NESol|BE, T\Se/, w \3t,/,
ox oy

a
R Y oxy oy
3¢ 3¢ d¢ o9

with the lower terms in the first determinant and alil those in the
second equal to zero at the point of emission. The variables x3
and y1 are expressible as integrals over -z , and their deriva-
tives with respect to the ray parameters may be similarly expressed
by differentiating under the integral sign. Thus, all the terms
except the upper terms in the first determinant are integrals over
-z taken from the point of emission. We make a transformation of
the independent variables (tg,9) to (co,v) and write

/9% Byl

o (5= St
dta/o a’/0 3¢ 3 dxy 3y,
c A — - a_V axl 5y1 . Bt_a ta acO acO (20)
0 A¢ Sco aco 500 3 axl ayl
Sco le Byl ¢ ¢ v ov
3¢ dv ;v
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Here we have used the theorem that the determinant of the product
of two matrices is the product of their determinants. The deriva-
tives of x7 and V3 with respect to c¢c5 and v 1in equation
(20) are again integrals over -z taken from the point of emilission.
Our next step is to evaluate these quantities.

The initial values of the tg derivatives may be calculated
with the aid of the equations for the direction cosines of the
initial wave normals. We note that

L

I

cos 6_ cos (v - v)

l

m = cos 6_ sin (v - wv)

The result of the calculation is

Bxl\
55) _ Yiaos  cosly - ) < sin v con 8,
\,
_ sin vy
Yng <l T %in @ sin 90)
Ve .
3 sin vy 21
_COQ1+Sinusin eo> =)
ay . "
N ) ) ) sin 7y
5) = V cos vy sin (¥ - V) Yt <1 * %in p sin O )
a’ 0 ©
_ _Vcosycosusind 0 (1, SR Y o (22)
cos o Sin g sin v,

To calculate the derivatives of (x7,y1) relative to c¢o and
v , we first recognize that the coordinate system is defined to
correspond to one reference ray with v = v, and that we must
consider neighboring rays. The ray tracing equations (see equa-
tions preceding (18)) are written in terms of x3; and yj; and are

dx u

1 _ cos 6 _ n
d(-z) sin © a gin ©
_dyl _ _ cos Q(V - v ) Y
a(-z) sin © r/ ~ a sin O
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In the second equation, (v - v,) represents sin(v - vy) with

vV - vy small. A factor cos(v - vy) in the first equation has
been set equal to 1. 1In the same terms, equation (17) relating
Co and 6 may be written

C = —2_ - u_ + up (V- ovy) (23)

o) cos 6 n
These three equations are differentiated at constant =z with
respect to the three variables Co » vV, and 6 , and then v is
set equal to Vy . The differential of 6 is eliminated to yield

dx; 4 0xXy
3 d(-z _ §Co - ¢ c053 6
BCO d(-z) e aESiHB 0
dx ox
1 1 3
o) m _ d Y . U_t cos~ 6
oV d(-z) © a2 sin3 6
Ay
dy 1
1 d 3
S q7=% _ oc g cos” 6
oc d(-z) a® sind o
dy oy
0 dZEz§ _ d 5% cos 6 _ ut2 COSB ©
SV T d(=z) sin © 2 o103 o
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We now substitute the expressions obtained in equations (21),
(22), and (25) into formula (20) for the ray-tube area. The result
is

7 dc

i i V sin ¢ cos p cos vy 0
A = L<1 + SERAT N > I, - ug I,) - T
sin p sin 6, ( 2 to 1) cos 6, 11 3¢

sin vy > V sin ¢ cos | cos vy ov
- 1 I. - T - T —
[( T Sin L osin 6, ( 3 Yt 2) cos 6 24 ¢

o v —-—-——5> (1,15 - 15) (26)

This 1s the desired expression for A . This expression is given
in terms of the derivatives of Co and v with respect to the ray
parameters, and these derivatives must now be calculated,

In the calculation of these derivatives, the quantities v ,
Y , and p are functions of tg alone. The derivatives of v
are obtained with some algebraic manipulation from equation (9) and
are

v dy sin ¢ du. . ay
= + cos + cos8 sin ©
Oty dty  cosZe Y ag, " ° dt,
o
(27)
v _ —32%~E (cos p sin vy + sin W cos 7y cos ¢)
9¢ cos”0

To obtain the derivatives of c¢, , we first differentiate equation
(23) again at the aircraft (with z variable) to obtain

a, sin 6 Fq 0 dag duno>
de = d6_ + ug av + ( - dz
o cosgeo o o cos O dz dz

Equation (10) for sin 6o 1s also differentiated, and the O6
derivatives are eliminated. The quantity 0Jz/d¢ is zero and

3z dza a sin vy

Oty  dtg sin W
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We can then express the derivatives of s as

Bco 3v a, sinf9o[( au
52 = u - cos W sin ¥ + sin B cos 7Y cos ¢)H——
ta to Bta oos3 90 ta

+ (sin p cos ¥y + cos W sin 7y cos ¢)%%—]

du

a_ sinvy da n
+ O / 1 o _ o> (28)
sin B \cos QO dz dz
Bco . v a  sin 90 cos W cos ¥ sin ¢ (29)
oF to of cosseo
In equation (28) the derivative of u with respect to =z 1is

taken with v constant in the fixed %l:YI) coordinate system.
Thus, duno/dz is to be interpreted as sin v duyx /dz + cos Vv
duy_/dz . "Both dup /dz and dag/dz are, of course, evaluated
at’ €he aircraft altifude only.

Demonstration of the galilean invariance of A 1is, of course,
not essential to the analysis. Here we outline such a demonstra-
tion. The quantity c is altered by an added constant in a
galilean transformation in the xj7 direction, while a constant 1is
added to the function ug(z) in a galilean transformation in the
y1 direction. However, the combination of terms

aco oV

.————-—-u QRIS
Bta to oty

and the corresponding quantity using ¢ derivatives are galilean
invariant, as are the corresponding derivatives of v alone The
combinations of integrals I, - utoIl and I3 - 2ut012 + utoll
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are also galilean invariant. From these results it may be shown
from the expression (26) that A 1is galilean invariant.

Application in the program.- For each ray, the derivatives
of ¢, and v relative to t, and ¢ are calculated from (27),
(28), and (29) using information from the Aircraft Maneuvers
Section. The integrals of equations (24) are computed along the
ray. The ray-tube area A 1is computed from equation (26) at the
same time the ray is computed.

Historical note.- The concept of ray-tube area in sound
propagation without planar, cylindrical, or spherical symmetry
appears in a solution by Rayleigh in 1878 (Sect. 284 of ref, 6)
with straight rays. Most discussions in the literature of ray-
tube area with curved rays have been confined to cases in which
the aircraft is in steady level flight (no dependence upon ty)s
in these cases the solutions are much simpler than in the general
case.

Flow Near the Aircraft

The purpose of this section is to define the F-function used
in the analysis and to present an outline of the local theory near
the aircraft which leads to the concept of the F-function. The
F-function is needed as an initial acoustic signal in the basic
geometric acoustics calculation. The F-function can be directly
computed by linear theory from the geometry and 1ift distributions
of a slender aircraft. The reader uninterested in the details of
this computation may skip to equation (33) where the F-function as
used in this analysis i1s defined.

The initial conditions for the calculation of sonic boom pro-
pagation must be obtained from the flow field near the aircraft.
This section reviews the local theory near the aircraft which leads
to the concept of an F-function. This F-function is the function
in terms of which initial conditions are Specified.

Thus we describe here briefly the linear solution for the flow
about an aircraft with particular attention to the outer asymp-
totic form of this solution. We assume, for simplicity, that the
Slender-body and thin-wing assumptions of linearized supersonic
aerodynamic theory are valid, and that the aircraft may be repres-
ented by a combination of linear and surf